« CatEnerChem » Ecole Thématique CNRS -2022 Soutenue par INC – INSHS

A Roadmap for Catalysis to Support a Society Powered by Renewable Energies Scientific and Socio-Economic Aspects of the Energy – Chemistry Nexus

35-H program

13h Catalysis & Chemistry 8h Social Sciences & Humanities 4h Serious Games, theater & workshops

5h Q&A+ 44 posters 5h practicals

98 people on site

22 remote attendants

73 participants: 14 Staff + 59 PhD&PostDoc 6 participants: 4 Staff + 2 PhD 14 speakers 15 speakers +1 (pre-taped)

11 organizers

84.5 k€ budget

Registration fees 37 % + Institutional support 63 %

« CatEnerChem » Ecole Thématique CNRS -2022 Soutenue par INC – INEE- INSHS

A Roadmap for Catalysis to Support a Society Powered by Renewable Energies Scientific and Socio-Economic Aspects of the Energy – Chemistry Nexus March 14th -18th, 2022 – Aussois (France)

« Transdisciplinarity to become more effective researchers & teachers in catalysis for the energy transition »

	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
		CH₄	CO ₂	NH ₃	(Bio-)Polymers
Color Code:		Geo-politics	Economy (Game Theory)	Industrial Catalysis	Industrial catalysis
General lectures Social Sciences & Humanities Lectures Catalysis Lectures Q&A, Debrief & Poster Sessions		Heterogeneous Catalysis	Industrial Engineering	Plasma	Recycling Biorefinery
		Poster	Poster	Poster	Poster
		Industrial Catalysis	Homogeneous Catalysis	Electrocatalysis	Biomass
			Life Cycle Analysis		Biofuels
		Q&A	Q&A	Q&A	Q&A
Practicals & Serious	Games	·			
		Take-home Message	Take-home Message	Take-home Message	Take-home Message
	Opening	H ₂			Conclusion
	Anthropocene	Photochemistry			Transition Scenarios
	December Francisco	D'ataska da a			Discussion
	Renewable Energies	Biotechnology			Epistemology
	History	Industrial Production			Prize & Closing
		Q&A			-
	Ethics	6	Systemic Approach to Teaching	Problem-Based Learning	
		Psychology (Cognitive Biases)	.o-rodoming		
	Economy (Behavioural)	Take-home Message	Problem-Based Learning	Interactive Teaching	
	Foonomy	Foonomy	Davehology		
	Economy (Behavioural)	Economy (Behavioural)	Psychology (Cognitive Biases)		

35-H program

13h Catalysis & Chemistry

8h Social Sciences & Humanities

4h Serious Games, theater & workshops

5h Q&A+ 44 posters

5h practicals

Speakers, Discussion Leaders, Teachers

A. QUADRELLI (CNRS) S. BORDIGA (UNITO)

W. STEPHEN (CRI, SW)-r W. TUMAS (NREL, US) -r

History

A. MISSEMER (CIRED, F)

Economy & Psychology

B. RUFFIEUX (UGA)

L. AUFENBERG

H. KUNREUTHER (U. Penn)-r

CH₄

F. DI RENZO (CNRS Em)

M. NICOLAZZI (LIMES,I)-r

J.P. DATH (TotalEnergies, F) -r

J. VAN BOKOVEN (ETHZ &PSI)

V. ARTERO (CEA)

N. DUPASSIEUX (CEA)

T. LEPERCQ (Solairedirect, F) -r C. ANDRONESCU (Duisburg)-r

K. VINCENT (Oxford, UK)-r

T. CANTAT (CEA)

J. C. PEREAU (U. bordeaux)-r

M. SORENSEN (Haldor Topsoe)

W. LEITNER (MPG)-r A. BARDOW (ETHZ)-r

T. M. NGUYEN (H. Topsoe, DK)

R. INGELS (N2 APPLIED N)-r

Ib CHORKENDORFF (DTU, DK) -r

(Bio)Polym

E. GROPPO (UNITO)

N. FRIEDERICHS (Sabic)

V. MONTEIL (CNRS)-r

F. PICCHIONI (Groeningen NL)-r

C. PEREGO (ENI formerly)-r

K. BARTHA (U. Graz) -r

Scenarios & Debrief

F. CHANDEZON (CEA)

B. WECKHUYSEN 5Utrecht) -r

J. MICHEL (U Lyon)

J. KRATOCHVIL (U Lyon)

Epistemology & Ethics

M.-G. SALAMANCA (U Lyon)

P. ANASTAS (Yale U.)-r

Prcaticals

M.PREVOT (CNRS)

B. REUILLARD (CEA)

M. SIGNORILE (UNITO)

M. RAVI (U. Birgmingham)-r

X. CARRIER (SU)

-r: in remote

« CatEnerChem » Ecole Thématique CNRS -2022 Soutenue par INC – INSHS

A Roadmap for Catalysis to Support a Society Powered by Renewable Energies Scientific and Socio-Economic Aspects of the Energy – Chemistry Nexus March 14th -18th, 2022 – Aussois (France)

« Transdisciplinarity to become more effective researchers & teachers in catalysis for the energy transition »

	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
		CH₄	CO ₂	NH ₃	(Bio-)Polymers
Color Code:		Geo-politics	Economy (Game Theory)	Industrial Catalysis	Industrial catalysis
General lectures		Heterogeneous Catalysis	Industrial Engineering	Plasma	Recycling Biorefinery
		Poster	Poster	Poster	Poster
Social Sciences & Humanities Lectures Catalysis Lectures		Industrial Catalysis	Homogeneous Catalysis	Electrocatalysis	Biomass
	·		Life Cycle Analysis		Biofuels
Q&A, Debrief & Poster Sessions Practicals & Serious Games		Q&A	Q&A	Q&A	Q&A
		Take-home Message	Take-home Message	Take-home Message	Take-home Message
	Opening	H ₂			Conclusion
	Anthropocene	Photochemistry			Transition Scenarios
	Danswahla Fassiss	Distantantan			Discussion
	Renewable Energies	Biotechnology			Epistemology
	History	Industrial Production			Prize & Closing
		Q&A			
	Ethics		Systemic Approach	Problem-Based	
	Luiio	Psychology (Cognitive Biases)	to Teaching	Learning	
	Economy (Behavioural)	Take-home Message	Problem-Based Learning	Interactive Teaching	

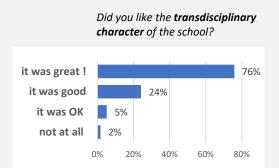
35-H program

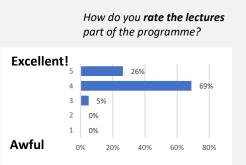
13h Catalysis & Chemistry 8h Social Sciences & Humanities 4h Serious Games, theater & workshops 5h Q&A+ 44 posters 5h practicals

Transdisciplinary chain of knowledge that the program has systematically explored:

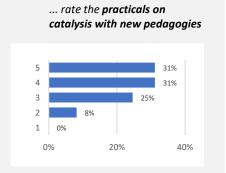
- Elements of the systemic environmental, socioeconomic and ethical context of the field
- Current state of the art of the industrial production in chemistry of 5 pivotal molecules at the energy/chemistry nexus (methane, hydrogen, carbon dioxide, ammonia. (bio)polymers)
- Identification of catalytic solutions currently at work and being improved for each molecule (photo-, electro-, bio-catalysis)
- Tools (epistemological, among others) for the analysis of the scenarios that these solutions imply, for example, the work via "serious games" for an awareness-raising work in order to favor the energy transition

« CatEnerChem » Ecole Thématique CNRS -2022 Soutenue par INC – INEE- INSHS

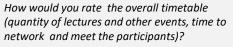


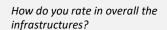

A Roadmap for Catalysis to Support a Society Powered by Renewable Energies Scientific and Socio-Economic Aspects of the Energy – Chemistry Nexus March 14th -18th, 2022 – Aussois (France)

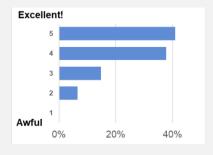
Results of 62 answers (68% participation)


Survey

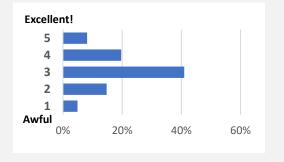
91 people on site who attended at least Monday & Tuesday




Results of 62 answers (68% participation)


Survey

among 91 people on site who attended at least Monday & Tuesday



...The hybrid solution (in presence and remote) was mostly induced by the covid-19 situation. How do you think the hybrid solution overall affected the school?

« CatEnerChem » Ecole Thématique CNRS -2022 Soutenue par INC – INSHS

A Roadmap for Catalysis to Support a Society Powered by Renewable Energies

Scientific and Socio-Economic Aspects of the Energy – Chemistry Nexus

March 14th -18th, 2022 – Aussois (France)

Main scientific & pedagogic take-home lessons from the CatEnerChem experience:

- 1. The link between chemistry and the broad framework of the Anthropocene is strong and provides a relevant framework for complex systemic analysis of the energy-chemistry nexus
- 2. The importance of **embedding advances in a specific research topic** (e.g. chemical use of CO₂, defossilized production of NH₃) in **a broad understanding of the underpinning cycle** (carbon cycle, nitrogen cycle) and the underlying planetary boundaries
- 3. The relevance of concepts from philosophy, epistemology, history, geography and other SHS disciplines to understand and overcome the disciplinary compartmentalization and reductionist approach that still runs through our field and that are little in line with the systemic and complex nature of the changes underway.
- 4. The classic face to face lessons were well complemented by the power of **new learning methods** (e.g. theater-based workshops on ethics, interactive practicals through instant polling, debriefing sessions, video recording of self-reflexive considerations, practicals based on systemic approaches, serious games in psychology, long Question&Answer sessions, ...) that reflect the systemic, demanding, reflective and decentered nature that the Anthropocene requires